69 research outputs found

    Numerical Modeling of a Church Nave Wall Subjected to Differential Settlements::Soil-Structure Interaction, Time-Dependence and Sensitivity Analysis

    Get PDF
    Historic masonry structures are particularly sensitive to differential soil settlements. These settlements may be caused by deformable soil, shallow or inadequate foundation, structural additions in the building and changes in the underground water table due to the large-scale land use change in urban areas. This paper deals with the numerical modeling of a church nave wall subjected to differential settlement caused by a combination of the above factors. The building in question, the church of Saint Jacob in Leuven, has suffered extensive damage caused by centuries-long settlement. A numerical simulation campaign is carried out in order to reproduce and interpret the cracking damage observed in the building. The numerical analyses are based on material and soil property determination, the monitoring of settlement in the church over an extended period of time and soil-structure interaction. A sensitivity study is carried out, focused on the effect of material parameters on the response in terms of settlement magnitude and crack width and extent. Soil consolidation over time is considered through an analytical approach. The numerical results are compared with the in-situ observed damage and with an analytical damage prediction model.The authors acknowledge the funding received by BRAIN.be, Belspo in support of the GEPATAR research project (“GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium” BR/132/A6/Gepatar).Peer ReviewedPostprint (author's final draft

    Numerical analysis of settlement-induced damage to a masonry church nave wall

    Get PDF
    Differential soil settlements can induce structural damage to heritage buildings, causing not only economic but also cultural value losses. In 1963, the Saint Jacob’s church in Leuven was permanently closed to the public because of severe settlement-induced damage caused by insufficient bearing capacity of the founda- tion. Currently, the church is stabilized using a temporary shoring system. This work aims at implementing a practical modelling approach to predict damage on church nave walls subjected to differential settlements. For that purpose, a finite element model of the Saint Jacob’s church nave was generated and validated through on- site monitoring data including levelling, damage survey and laser scanningThis work was done within the framework of the GEPATAR project (“GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium” BR/132/A6/Gepatar), supported by BRAIN.be, Belspo.Postprint (published version
    • …
    corecore